
SIMBAD User’s Manual. Version v.1.36

A.U. Luccio and N.L.D’Imperio

Brookhaven National Laboratory, Upton NY 11973

present address: FZ-Juelich, Germany

August 5, 2004

1 Introduction

SIMBAD is a Particle-in-Cell (PIC) tracking code [1] designed to track particles in 3-D in an accel-
erator. Many of its algorithms are designed and optimized with an hadron synchrotron or storage
ring in mind. In SIMBAD a “herd” of representative macro particles (in short: macros) is injected
and propagated through the structure of the accelerator represented by a sequence of transfer maps.
In the present version, transfer maps are produced by the code MAD, that stands for Methodical
Accelerator Design. The effect of space charge in the presence of accelerator walls and the effects of
impedance on the beam is calculated.

SIMBAD is the BNL version of ORBIT [2]. It has been designed and optimized to run on a
parallel computer, however for limited tasks, it can also be run on a serial machine. The language
used is C++, the default compiler is the gnu compiler. The code has also been installed on machines
using different compilers, like the IBM AIX. Default graphics is provided by GNUPLOT [3].

The code is simply run by reading parameters from a configuration file, as follows:

> SIMBAD filename.conf serial
> mpirun -np N SIMBAD filename.conf parallel linux

> lload filename.cmd IBM AIX

The present SIMBAD User Manual is essentially a description of the configuration file and of the
meaning of the various items in it. Before running SIMBAD one must edit the .conf file. A specific
action is accomplished by uncomment the relative module.

2 Basic concepts

2.1 Nodes

Events happen sequentially during tracking. The propagation of the Herd through a machine element
is one of such events, the calculation of Space Charge force is an event, dumping of the phase space
coordinates of each macro is an event, etc. Events happen at locations in the lattice called Nodes.
Each node has a name, an integer order number and a longitudinal coordinate. To start with,
machine elements read from the MAD [4] output are given integer ordering number spaced by some
input interval, say 1000, other nodes are later inserted between machine elements, just by assigning
to them a number between these two numbers.

In SIMBAD the longitudinal distance variable is in a sense the independent variable. Sometimes
the variable time is important for calculations, e.g. for space charge forces. In this case, space and
time are transformed from one to the other

SIMBAD works using the Split Operator technique: some propagation in the “Bare Lattice”, a
calculation of some effect, a new propagation, an so on.

1

3 Preliminary Setting

The .conf file contains some preliminary settings. Some, marked with (*), here and in the following,
should always been kept uncommented (activated)

command example comment

string version = “1.36” version of SIMBAD
int runID = 1821 run identification number
module Ring (*) this creates the ring ring basic structure
module SyncPart (*) create Synchronous particle
module MacroHerd (*) create MacroHerd
string herdName = “MainHerd” name of the herd [1]
module Parallel initialize parallel computation
module Output activate output module
double mSync = 1.0 mass of Sychronous particle/mass of the proton]
double charge = 1.0 charge of Synchronous particle/charge of the proton

NOTES: [1] There may be more than one herd

4 Run commands

Logical variables, here and in the folowing, may have a value [0/1 = false/true].

command example comment

int nTurns = 1000 number of turns to be completed
double tSync = 15. start Kinetic Energy of Synchronous particle [GeV]
double matrixEnergy = 10. kinetic Energy that was used to generate matrices [1]
double harmonicNumber = 1.0 harmonic number
int longTrackOnly = [0/1] longitudinal tracking only [2]
int usePendulum = [0/1] use pendulum equation for phi [3]
double rTime = 0.0 initialize ring time
int injTintegererval = 1 turn interval for injecting new particles
int nMcrsPTurn = 100000 number of macroparticles to inject per turn
int maxMacros = 100000 maximum number of macros to be injected [4]
double nRealMacros = 5.0e11 number of ”real” particles
int singleNodeStep = [0/1] Interactive single step [5]
int nnodes = 100 number of nodes to traverse if nTurns == 0 [6]

NOTES: [1] This may be different than tSync. Defaults to tSync if not activated. It is there to
initialize matrix elements scaling with energy. [2] Default value is false. [3] In this example all
macros are injected at once. [4] use pendulum equation to track phi instead of matrices. default
value is true. [5] Variable to specify interactive single stepping through nodes. [6] If nnodes == 0
then all nodes will be traversed.

5 Injection

5.1 External Distribution

A distribution of particles for tracking is created by a preprocessor (see Sect. 14, or generated inter-
nally. The internal generation is inherited from ORBIT. We tend to favor an external generation.

2

command example comment

module Injector (*) activate Injector module
string injectorName = ”Injector” injector name
int injectorOrder = 2
int injType = 1 type of population at injection [1]
string injFilename = ”HESR-240-de-4.dis” name of file containing particle coordinates

NOTES: [0 = built in (Joho), 1 = read from file]

5.2 Built-in Distribution

This second setting if built-in distribution (Joho) is chosen. This is borrowed from Accsim [5].

command example comment

int injType = 0 type of population at injection
string injXInitializer = ”JohoXDist” name of injection function for x
string injYInitializer = ”JohoYDist” name of injection function for y
string injLongInitializer = ”JohoLDist” name of injection function for longitudinal
double betaXInj = 13.588 X distribution parameters for matching [1]
double alphaXInj = 1.838
double epsXLimInj = 100.0
double MXJoho = 1.0
double xTailFraction = 0.0
double xTailFactor = 1.0
double x0Inj = 0.0
double xP0Inj = 0.0
double MLJoho = 1.0 M value of Joho Logitudinal distribution
double lTailFraction = 0.0
double lTailFactor = 1.0
double phiLimInj = 180.0 injection bucket [-phiLimInj, phiLimInj] in deg
double dELimInj = 0.01 limiting energy spread in GeV
double deltaPhiBunch = 0.0 longitudinal center of the bunch [deg]
int nLongInjBunch = 1
double phiMaxInj = 180.
double phiMinInj = -180
double EInjMean = 0.0114
double EInjSigma = 0.01
double EInjMin = 0.0114
double EInjMax = 0.0114

NOTES: [1] for Joho epsXLimInj = epsXRMSInj * 2 * (MXJoho+1) . Same for Y.

6 Units. MAD input

SIMBAD uses MKSA units for all calculations. Input and output of phase space coordinates are in
[mm] and [mrad] for transverse coordinate and angle, [rad] for longitudinal coordinate Φ and [GeV]
for energy coordinate ∆E. Phase and ∆E are evaluated with respect to the phase and energy E of
the synchronous particle.

MAD coordinates are in [m] and [rad] in the transverse phase space, in [m] for the phase –in
MAD it is Φ : −c∆t–, and [0] for the energy coordinate –in MAD it is ∆E : ∆E/pc– Some unit
transformation is needed here and there. It is also important to note that the longitudinal coordinate,
“position”, of each accelerator element in MAD is evaluated at the end of element [6].

SIMBAD uses the output from MAD-8 at the present time. Work is in progress to make MAD-X

the standard.
Two MAD output files are used by SIMBAD: the “.twiss” file and an “.echo” file. The former

contains twiss functions for each element, plus the value of some basic quantities for the lattice, like

3

the betatron tunes and the transition energy. This file is created with the command “twiss” in the
input to MAD. The latter contains the transfer matrices for each element in the accelerator and the
second order transfer maps. First order matrices are generated with the MAD commands “setopts,
echo”, then “select, flag=first”. First and second order maps are generated with ‘setopts, echo”,
then “select, flag=second”.

SIMBAD reads and compares the two file to create a third file “Twiss Plus Matrices”, or TPM,
containing all the info necessary for bare lattice tracking. Commands and parameters are

command example comment

module TransMats activate Transfer matrix module
string madFileTWISS = ”input/HESR1.twiss” MAD Twiss file
string madFileTM = ”input/HESR1.echo” MAD echo file
string madreadOutput = ”TPM.dat” created Twiss+Maps
int second order = 1 0=1.st order track, 1=2.nd order [1]

NOTES: [1] must be matched by the appropriate mad files. By default 0 is assumed.

7 Acceleration

Acceleration is simulated in SIMBAD by mimicking what happens in a real synchrotron control
room. That is, a file containing a table of values of the main magnet field B vs. time, plus RF
voltage for different harmonics and RF phase at each time. The code interpolates through the table,
calculates the approriate energy for each value of the field and applies it to the synchronous particle.
The RF voltage is applied to each macro at the nodes corresponding to RF cavities. The .conf file
elements are as follows

command example comment

module RampBAccel activate Ramp-B-Acceleration
string rampBASpecFile = ”input/Ramp HESR1.in” name of rampBA input file

The Ramp file contains informations for every ramp node with a line for each node. Line struc-
ture is (items separated by a blank space)
node name node index table type (RAMPBV or RAMPV) subroutine bend radius [m]

Example of Ramp file
RAMPB1 15 RAMPB1.input RAMPBV INTERPOLATEBV 7.0
RAMPB2 30 RAMPB2.input RAMPBV INTERPOLATEBV 7.0
.....

There must be a table file for each node. A table type RAMPBV is structured as
number or RF harmonics: integer
time [msec] B [T] Volt(1) [kV] Phase(1) [rad] Volt(2) Phase(2) ...
..
..

A table type RAMPV is structured as
number or RF harmonics: integer
time [msec] Volt(1) [kV] Phase(1) [rad] Volt(2) Phase(2) ...
..
..

8 Space Charge. Impedances

There are many methods to calculate transverse space charge self forces on a high intensity beam,
all based on the solution of the Laplace-Poisson-Ampere equations. A force on a given particle P is
due to the field directly generated at the particle’ by every other particle Q in the beam, plus the

4

forces due to image charge and current on the walls of the accelerator vacum chamber. Radial forces
transalte into radial angle kicks, longitudinal forces in longitudinal energy kicks.

In the present version of SIMBAD only the transverse Poisson problem is solved, i.e. only wall
charge images are considered, and image currents are not. In addition, only perfectly conducting
walls are considered. Poisson equation can be written either in integral form or in differential form.
In the first case, the solution is found in SIMBAD using two methods: ”Brute Force” or direct
numerical integration, and FFT, where the Poisson equation is reduced to a convolution. In the
second case, the differential Poisson equation is solved by writing the Laplacian on a transverse mesh
and inverting it using standard linear equation solvers, like LU decomposition, or iterative methods.

After a solution is found of the transverse problem, the longitudinal kick is calculated by the
potential difference at any transverse x, y location between adiacent slices.

Finite conductivity of the walls and variation of the vall geometry along the beam path can be
represented by longitudinal and transverse impedance tables, with real an imaginary part of the
impedance listed for each harmonic mode (frequency). Longitudinal and transverse kicks are calcu-
lated in SIMBAD, following a method developed for the one-dimensional FermiLab code ESME [7]
by first performing an FFT analysis of the beam current, in order to find harmonic components of
the current. Then, each component of the impedance, in [ohm], is combined with a component of
the current, in [A], to generate a voltage kick, with the appropriate amplitude, in [volt], and phase.
These kicks produce a distorsion in the phase space distribution that can lead to instabilities and
beam losses. It must be pointed out that impedance effects develop very slowly, and then require
that the herd would be followed for many thousand revolutions in the simulation. Also, FFT of the
beam can be made up to a large number of frequency with the needed accuracy only if the number
of macros used in the simulation is large. For impedance studies parallel computing is a must. At
the present time impedance effects are only calculated once per turn, using impedance budget tables
for the full accelerator structure.

8.1 1-, 2-, and 3-dimension tracking

One dimension tracking is longitudinal tracking where we don’t care about the transverse phase
space that is only transformed along the lattice using the bare tune MAD maps. Longitudinal
transformations are done by solving the coupled discretized “pendulum equations” for Φ and ∆p/p.

Two dimension tracking, that is sometimes called 2 1

2
, is performed by slicing the beam in many

longitudinal partitions, and solving the space charge problem (see sec. /refsec:SpaceCharge) in each
section. At each Transverse Space Charge node this operation is performed on each longitudinal
slice, possibly with parallel computing. In this case, the longitudinal propagation is done by using
the full 6 × 6 1.st order matrices and the 6 × 6 × 6 second order transfer maps, or tensors.

Three dimension tracking is done by still slicing the beam, but solving the space charge problem
with all macros in the herd reduced at the same time. We call this “freezing” the beam. Only in
this case the space charge forces in all three dimensions are correctly calculated. The criterion for
slicing the beam is that a slice should be a fraction of a β-function wave.

8.2 Longitudinal Space Charge. Longitudinal Impedances

Activate Longitudinal Space charge module based on FFT (don’t use with freeze). This module is
both calculating L space charge with a theoretical formula and Long impedances [8], if the impedance
file is present. If this module is on and Transverse Space Charge is also on, it must be int nLongSC
= 0 in TSC, otherwise SIMBAD would try to calculate the LSC twice with different methods

5

command example comment

module FFTLongSC activate Longit. Space charge module
string fftLSCName = ”LSC1” name of node
int fftLSCOrder = 770 node index
int nLongBins = 128 number of longitudinal bins
double b a = 5.0 ratio between beam (round) and chamber b/a
int useAvg = [0/1] use averages
int nMacroLSCMin = 10 minimum number of Macros [1]
string fftLongSCSpecFile = ”input/ztab128.tab” file of long. impedance data

NOTES: [1] for LSC and TSC calcs to be done.

The file containing the longitudinal impedance data has format
n0 real(Z) imag(Z)
n1 real(Z) imag(Z)
..

At the present only one table of L Imped is present, as a budget for the entire ring.

8.3 Transverse Space Charge

command example comment

module TSpaceCharge activate Transverse Space charge module
int nXBins = 32 number of mesh points in x [1]
int nYBins = 32 number of mesh points in y
double hDimension = 160 wall dimensions in mm [2]
double vDimension = 160
string wallsFile = ’input/walls.in” input table for variable walls option [3]
int actPartLosses = [0/1] activate particle losses for collisions with walls
int tscCalcType = [1/2/3/4] method of calculating Transverse Space Charge [4]
double pOpt = 0.999922 Jacobi spectral radius for SOR: optimal for 512x512
double pOpt = 0.999912 - optimal for 256x256
double pOpt = 0.9997 - optimal for 128x128
double pOpt = 0.9986 - optimal for 64x64
double pOpt = 0.99469 - optimal for 32x32
double eps = 0.001 smoothing parameter
double gridFactor = 0.001 grid factor for extra spacing around distribution
int useMPISOR = [0/1] variable to enable parallel SOR solve [5]
double nMacsMinPercent = 0.01 % of macros for which TSC calcs will not be done [6]

NOTES: [1] the number of mesh points must be even. [2] At the present, need to be same value for
H and V. If different, the largest is the default. These number can be overwritten by the variable
wall option. Walls are perfectly conducting. [3] In a wall file each entry denotes a new section of wall
[mm] vs. location around the machine [m]. The format is as follows: horiz[mm] vert[mm] sPos[m]
[4] ”1” is Sparse LU method, ”2” is FFT, ”3” is for SOR iterative method, ”4” is BF. The grid must
be square for all methods and the dimension of the chamber must be square for methods 1 and 3.
[5] This is only good with large grids. Make sure you test before committing to a production run.
[6] For example, if the value is 1.0 then if the number of macros in a given element is less than one
percent of the global number of macros the calcs will be skipped.

6

8.4 3-D

command example comment

int nLongSC = 0 no of times long. space charge is calculated per turn [1]
int longBins = 128 number of bins to subdivide the beam for LSC calcs
int bmEnvLayout = [1/0] layout spacecharge nodes according to beam envelope
int betaFuncFact = 4 variable to divide the space charge elements

- according to the length of the beta function
int freezeBeam = [1/0] variable to enable beam freezing [2]
int trimPhi = [0/1] Trim particles with extreme phi values

NOTES: [1] the number of mesh points must be even. [2] At present only applies to iterative solver
and only to serial runs.

8.5 Transverse Impedances

Transverse Impedances require an FFT of the beam transversely, to cople impedances with trans-
verse beam modes
command example comment

module FFT TImpedance activate module
string fftTImpedName = ”TIMPED1” name of node
int fftTImpedOrder = 780 node index
int nTImpedBins = 32 number of transverse bins
double b a TImped = 1.0 ratio of beam height to width
int useAvg TImped = [0/1] use transverse averages
int nMacsMinTImped = [0/1] minumum number of Macros for calcs
string fftTimpedSpecFile = ”input/FFTTImped.input” T impedances table

The FFT TImpedance input file contains the information for the impedance values of the node.
The file should contain (items separated by a blank)
(nTImpedBins) lines with 9 columns per line:
nfrequency number
real(ZXImped nplus)
imag(ZXImped nplus)
real(ZXImped minus)
imag(ZXImped minus)
real(ZYImped nplus)
imag(ZYImped nplus)
real(ZYImped minus)
imag(ZYImped minus)

9 Special Machine Elements

SIMBAD allows the insertion in the lattice of elements that have a special purpose, like foils, thin
lenses or collimators

9.1 Foil

In some proton machines negative ions are injected and stripped to protons on a thin foil. Foils can
also be placed in the lacttice for special purposes. The scattering and propagation through a foil is
calculated. Hits to the foils are counted.

7

command example comment

module Foil activate Foil module
string foilName = ”Foil” name of the foil
int foilOrder = 2 node order of the foil
int useFoilScat = [0/1] flag to use foil scattering
double xfmin = -100. min. foil coordinate in x[mm]
double xfmax = -25. maximum foil in x [2]
double yfmin = -100.0 miniumum foil in y
double yfmax = 100.0 maximum foil in y
double foilThickness = 300. thickness of the foil [µgram/mm2]
double foilFac = 0.665 scale edge so that 1% miss foil[1]

NOTES: [1] Foil factor = 1.33/((Injection::MXJoho + 1)/2). [2] inj− > x0Inj + sqrt(fabs(foilFac *
inj-¿betaXInj * inj− >epsXLimInj))

9.2 Bump

Programmable orbit bump. Three types of bump. Most likely: injection bumps are simulated in
this module. If a bump table is used

command example comment

module IdealBump1 activate Ideal Bump type 1
string bump1Name = ”UP-BUMP” Bump 1 name
int bump1Order = 1 Bump 1 node index
module IdealBump2 activate Ideal Bump type 2
string bump2Name = ”DOWN-BUMP” Bump 2 name
int bump2Order = 4 Bump 2 node indx
int bump1UD = [0/1] Up/Down bump1, 0=down, 1=up
string bumpFileName = ”input/bump.tab” file from which to read bump.ramp
double tBmp0 = 0.0 initial Bump time
double tBmpF = 1. final Bump time
double eFTX = 8 e-fold time ratio (after this, the bump is gone)
double eFTY = 0.00 e-fold time

If a bump table is NOT used, then
command example comment

string bumpFunct = ”EFoldBump” bump function to be used
double xBmp0 = -30. initial value of the x-bump
double xBmpF = 0. final value of the x-bump
double xPBmp0 = -5. initial value of the xP-bump
double yBmp0 = 0.0 initial value of the y-bump
double yBmpF = 0.0 final value of the y-bump
double yPBmp0 = 0.0 initial value of the yP-bump

9.3 Integrable Lens 2D

command example comment

module IntegLens2D activate Integrable 2D Lens
string intLens2DSpecFile = ”input/IntLens2D.in” name of integrable 2D Lens input file

The IntegLens2D input file contains the information for each node. The format of the file must
be as follows (a blank between items)
name of the node name of output file node order number :first line

non linear coefficient linear coefficient :second line

skip a line and repeat for the next IntegLens node

8

Example of IntegLens file
IL1 15
5.0 2.0

IL2 25
7.0 1.0

9.4 Rectangular Aperture

command example comment

module RectAperture activate the module
string rectApFileName = ”input/RectAp.in” name of input file

The RectAperture input file contains the information for each node. The format of the file must be
as follows (a blank between items)
node name node index :first line

xmin xmax ymin ymax transparent[0/1] :second line

skip a line and repeat for the next RectAperture node

Example of Rectangular Aperture file:
RectAp1 5
10.0 25.0 5.0 50.0 0

RectAp2
....

9.5 Momentum Aperture

command example comment

module MomentumAperture activate module
string momApFileName = ”input/MomentAp.in” name of input file

The MomentumAperture input file contains the information for each node. The format of the
file must be as follows (a blank between items)
name of the node node order number :first line

max(dp/p) calcFreq :second line

skip a line and repeat for the next MomentumAperture node

Example of Momentum Aperture file:
MomentAp1 5
10.0 3

9.6 Thin Multipole

command example comment

module ThinMPole activate module
string thinMPoleSpecFile = ”input/ThinMPole.in” name of input file

The ThinMPole input file contains the information for each node. The format of the file must
be as follows (a blank between items)
name of the node node order number :first line

order of multipole integrated strength[1] skew variable :second line

skip a line and repeat for next ThinMPole node

NOTES: [1] integrated strength of the field expansion (kl).

9

Example of Thin Multipole file:
TMP1 15
1 2.0 0

TMP2 25
2 3.0 1

9.7 Lattice Kicks

command example comment

module LatKicks activate module
string tKickInput = ”input/TKicks.in” name of input file

9.8 RF Cavity

To be used if you have a RF cavity at constant voltage and fixed beam energy (No Ramp)

command example comment

module RFCavity activate module
string rfSpecFile = ”input/RFCav.in” name of input file

The RFCavity input file contains the information for each RFCavity. The format of the file must
be as follows (a blank between items)
node name no of harmonics node index function :first line

volt(1)[kv] harmonic number phase(1) :second line

volt(2)[kv] harmonic number phase(2) :third line

...
skip a line and repeat for the next RFCavity node

Example of RF Cavity file
RF1 2 75 CONSTVOLTS
40.0 1.0 0.0
-20.0 2.0 0.0

RF2 2 100 CONSTVOLTS
41.0 3.0 0.0
-21.0 2.0 0.0

10 Output

command example comment

string of1 = ”Ring.dat” name of file containing the ring structure
int showSingleNode = [0/1] display node information [no/yes] [1]
int outputScreenToFile = [0/1] output screen data to file [no/yes]
string outputFileName = ”screen.dat” name of output file [2]
int dumpLostParts = [0/1] dump lost particles to a file [no/yes]
string lostPartsFileName = ”LostParts.dat” name of file to contain lost particles
int showSingleNode = [0/1] display some info to screen after every node

NOTES: [1] switch to display some node information to screen after every node completes.
[2] Output file contains:
Turn Time n-Macros n-Reals hits/p e-X-RMS e-Y-RMS eps-X eps-Y BF

10

11 Plot

Graphic output is done with GNUPLOT. One can run GNUPLOT interactively, i.e. getting con-
tinuous grapic output on the screen while SIMBAD is running, or dump data to graphic postscript
files. Interactive plot is not possible with parallel runs. Command and setting for GNUPLOT are

command example comment

module GPlot activate GPlot module
string gpNodename = ”gplot” GNUPLOT node name
int gpPSOut = [0/1] output plots to postscript [no/yes]
string gpFilenameBase = ”HESR1.gp” base name of GPlot postscript files
int gpScrOut = [0/1] output plots to screen [no/yes]
int gpNodes = 1 number of GPlot nodes
int gpInitialOIndex = 15 GPlot beginning node index
int gpOrderSpacing = 1000 GPlot node order spacing
int gpActTurnInt = 40 turn activation interval (..every n turns..)
int startPlots = 20 turn number in which to start plotting
int stopPlots = 600 turn number in which to stop plotting
int prune = 10 prunes the number of particles plotted [1]
int x yPlot = [0/1] plot y vs x [no/yes]
int x xpPlot = [0/1] plot xp vs x [no/yes]
int y ypPlot = [0/1] plot yp vs y [no/yes]
int phi dEPlot = [0/1] plot dE vs phi [no/yes]
int w dots = [0/1] allows feature ”with dots” [no/yes]
string gpScrSize = ”800x800” screen size
int setRanges = 0 set ranges [0/1=no/yes] [2]

NOTES: [1] i.e. if prune = 10 then only 1 in 10 particles will be plotted.
[2] 0 = set autoscale. If 1, set ranges.

If setRanges = 1, no autoscale, plot ranges are prescribedd as
int setRanges = 1
double xy xMin = -100.0 x-y range
double xy xMax = 100.0
double xy yMin = -100.0
double xy yMax = 100.0
double x xp xMin = -100.0 x-xp range
double x xp xMax = 100.0
double x xp yMin = -100.0
double x xp yMax = 100.0
double y yp xMin = -100.0 y-yp range
double y yp xMax = 100.0
double y yp yMin = -100.0
double y yp yMax = 100.0
double phi dE xMin = -3.14 phi-dE range
double phi dE xMax = 3.14
double phi dE yMin = -0.01
double phi dE yMax = 0.01

12 Diagnostics

SIMBAD has many diagnostics modules, inherited from ORBIT. Grdually, we are moving out of
them, relying instead on post processing the fundamental output files, especially the Phase Dump.
To generate a Phase Dump file we need some commands.

11

12.1 Phase Space Diagnostics

command example comment

module PhaseSpace activate module
string phaseSpaceFName = ”input/PhaseSpace.in” name of input file

The PhaseSpace input file contains the information necessary for each PhaseSpace node. The
format of the file MUST be as follows. The first line contains these records (separated by blanks)
name of the PS Diagnostics node
name of the file to which dump information
node index
turn interval for activation of the node[1]
Freeze beam [1/0=yes/no]
modulo for output of particles [2]
skip a line and repeat for the next PhaseSpace Diagnostic node

NOTES: [1] f the turn interval activation number is 1, then diagnostic information will be dumped
every turn, else every n turns. [2] 1=all particles and must be 0.

Example of Phase Spase Diagnostics file
PSnode1 “PSDump1.dat 1425 0 10 10

PSnode2 “PSDump2.dat 1725 0 10 10
..

12.2 Tune Diagnostics

Betatron and Synchrotron tune are also calculated in SIMBAD with various methods.
For the betatron tunes, a simple method is to count the number of transverse oscillations by

every macro per turn, or, better to compare the average wavelength of a transverse oscillation with
the length of one turn, for many turns. This method, still embedded int SIMBAD proper, requires
a large number of turns for a good accuracy, and for the very same reason cannot be used to follow
the evolution of the tune of a specific macro or a number of macros turn by turn. A second method
for the betatron tune, also in the body of SIMBAD, is based on the FFT of orbits. This method
can give interesting results -e.g. higher order tunes- but requires again many turns.

An alternative method, much more powerful, is based on the analysis of the eigen values of
the one turn matrix. Betatron and synchrotron tunes can be calculated at every turn, using the
phase space for the six preceding turns, with great accuracy. This method is impemented in a Post
Processor, or Utility subroutine, described in Sec. 15.

The built-in routines for tune calculations are driven by the following
command example comment

module Tunes activate module
string tunesFileName = ”input/tunes.in” name of input file
int startTune = 400 turn to start the tune calculation[1]
int stopTune = 499 turn to stop the tune calculation
int calcCoherentTune = [0/1] flag to calculate the coherent tune
string coherentTuneFilename = ”CoherentTune.out” coherent tune output file
int calcIncoherentTune = [0/1] flag to calculate the incoherent tune

NOTES: [1] Should have stopTune - startTune ¿ 10 to get a good statistics. -1 means never.
The Tunes input file contains the information necessary for each Tunes node. The format of the

file must be as follows (a blank between items)
name of the node
The name of file to which dump information
node order number

Example of Tune Diagnostics file
TunesNode1 “tunes1.dat” 13

12

12.3 Momentum Diagnostics

command example comment

module Moment activate module
string momentFileName = ”input/Moment.in” name of input file
int momentOrder = 2 order to which moments are calculated

The format of the file must be as follows. The first line contains these records (items separated
by blanks)
name of the node
The name of file to which dump information
node order number
turn interval
skip a line and repeat for the next RectAperture node

Example of Momentum Diagnostics file
MomNode1 “MomDump1.dat 1512 0 100

MomNode2 “MomDump2.dat 1712 0 100
..
..

12.4 TSC Kicks Diagnostics

command example comment

module TSCKicks activate module
string tscKicksSpecFile = ”input/tscKicks2D.in” configuration file

The TSCKicks input file contains the information required for each TSCKicks diagnostic node.
The format of the file must be as follows (items separated by blanks)
name of the node
name of file to which dump information
NTSC element name [1]
turn interval
start turn
stop turn

NOTES: [1] NTSC is the transverse space charge element number that should immediately precede
this diagnostic.

12.5 Accelerate Diagnostics

command example comment

module Accelerate
string accelFileName = ”input/Accel.in” configuration file
int calculateBucket = [0/1] flag to enable calculation of bucket

The Accelerate input file contains the information required for each Accelerate diagnostic node.
The format of the file MUST be as follows
name of the node
name of output file
node order number
integer to specify the type of RF associated [1]
ordinal number of the specific RF node associated [2]
turn interval
skip a line and repeat for the next RectAperture node

NOTES: [1] 0 = an RFCavity node, and 1 = a RampBAccel node. [2] starting with zero

13

Output contains
Turn Time n-Macros T-Sync B f beta phase Volt w synch E bck E bnc A bck A bnc dp/p

[msec] [GeV] [deg] [kV] [Hz] [MeV] [MeV] [eV-s] [eV-s] %

For example, if you have a single RFCavity node in the ring at position 20 you might use the
following...
AccNode1 “AccDump1.dat” 21 0 1 100

If you had 3 RampBAccel nodes in the ring at positions 51, 101, and 201 you might use the
following...
AccNODE2 “AccDump2.dat” 52 1 0 100
AccNODE3 “AccDump3.dat” 102 1 1 75
AccNODE4 “AccDump4.dat” 202 1 2 50

12.6 Canonical Coordinate Diagnostics

command example comment

module CanonicalCoords activate module
string ccFileName = ”input/CanonCoords.in” name of configuration file

The Canonical Coordinate conf file contains the information required for each CC diagnostic
node. The format of the file must be as follows (items separated by blanks)
name of the node name of output file node index turn interval
skip a line and repeat for the next CCDiag node

Example
CCNode1 CC1.dat 8 1

12.7 Transverse Emittance Diagnostics

command example comment

module Emittance activate module
string emitFileName = ”input/TEmit.in” name of config file

The Transverse Emittance conf file contains the information required for each TEM diagnostic
node. The format of the file must be as follows (items separated by blanks)
name of the node name of output file node index turn interval
skip a line and repeat for the next TEM node

Example
EMITNode1 “TEM1.dat” 8 100

Output file contains for every print step:
X RMS Emittance X max Emittance Y RMS Emittance Y max Emittance

π[mm-mrad] π[mm-mrad] π[mm-mrad] π[mm-mrad]

12.8 Longitudinal Emittance Diagnostics

command example comment

module LongEmittance
string lEmitFileName = ”input/LEmit.in” name of conf file

The Longintudinal Emittance input file contains the information necessary for each LongEmit
node. The format of the file must be as follows (items separated by blanks)
name of the node name of output file node index turn interval
skip a line and repeat for the next LEM node

Example
LEMNode1 “LEM1.dat” 8 50

14

12.9 Action Diagnostics

command example comment

module Actions activate Action Diagnostics module
string actionsFileName = ”input/Actions.in” name of conf file

The Actions input file contains the information necessary for each Actions node. The format of
the file must be as follows (items separated by blanks)
name of the node name of output file node index turn interval
skip a line and repeat for the next RectAperture node

Example
ActNode1 “Act1.dat” 9 15

12.10 Stat Lat Diagnostics

command example comment

module StatLat activate StatLat Diagnostic module
string statlatFileName = ”input/StatLat.in” name of conf file

The StatLat input file contains the information necessary for each StatLat node. The format of
the file must be as follows (items separated by blanks)
name of the node name of output file node index turn interval
skip a line and repeat for the next RectAperture node

Example
SLNode1 “SL1.dat” 9 25

12.11 Check Points

Enable if program checkpointing is desired

command example comment

module CheckPoint activate module
int chkPntTurnInt = 25 turn interval for writing checkpoint files
int cleanChkPnt = [0/1] clean checkpoint files on exit

13 Modularity, Pre- and Post-Processors

Our effort is to make the structure of SIMBAD as modular as possible, with the use of an expanding
number of Pre- and Post- processors. The purpose is twofold: (i) we find it desirable to decrease
the sheer size of the code, devolving many tasks to auxiliary codes than are used only if needed;
(ii) we want SIMBAD to migrate and work within the “Unified Accelerator Library”, or UAL, as a
wrapper, and for this modularity is a prerequisite.

The old ORBIT was full of preparatory routines and diagnostic modules. A preparatory routine
is the one described in section 6 above, that reads the output of MAD. This is still part of the present
version of SIMBAD, but is gradually being replaced by a pre-processor that will be able to read the
optics not only from other versions of MAD, but also from other codes, like TEEPOT or others.
Another pre-processor creates the initial particle distribution in the herd. Since any diagnostics
is based on some analysis of the output of the phase space (6 coordinates), we considered it more
profitable to do these analyses with post-mortem processors instead than burden the basic tracking
code with specialized routines.

15

14 Pre Processors

A collection of pre-processors are available for SIMBAD. One, of course is MAD, if we dare to call it
a pre processor. MAD creates the input optics files that contain the twiss functions and the transfer
maps, as described in Sect. 6. Only MAD-8 is compatible with SIMBAD so far.

14.1 MAD

A typical MAD-8 input (e.g. HESR1.mad) must contain the following commands

example of MAD command lines comment

PC := 14.5 particle momentum
beam, particle=proton, momentum=PC set up particle [1]
call filename=’HESR1.lat’ lattice file
setopts, echo insures that maps are output to .echo file
select, flag=SECOND, range = full writes transfer maps
twiss, tape=’HESR1.twiss’,deltap=00 produces and writes twiss.file [2]

NOTES: [1] This is important for the longitudinal components of the transport maps that depend
on energy. [2] The created .echo file will carry the same name as the .mad file. In our example
HESR1.echo

14.2 MAKEPOP: Particle Distribution Creator

The input particle distribution for tracking can either be creates inside SIMBAD or read from an
external file, as described in Sect. 5.

An external distribution is created with the Fortran-77 code MAKEPOP2, based on formalism
presented by G.Franchetti [9]. The operation of the code is as follows

> makepop2 < input file

An example of input file containing the parameters for the distribution is
variable value comment

&par namelist group begin mark
npart = 10000 number of particles in the distribution
Tdist = ’G1’ transverse distribution=random Gaussian [1]
iseed = 1812 seed for random number generation
alfax = -0.33569 Twiss-αx

betax m = 68.8921 Twiss-βx

ex m rad = 1.d-6 X-emittance [m-rad]
alfay = -4.4297 Twiss-αy

betay m = 148.107 Twiss-βy

ey m rad = 1.d-6 Y-emittance [m-rad]
dx m = 0.d0 horizontal displacement of beam
dy m = 0.d0 vertizontal displacement of beam
LDist = ’LG’ longitudinal distribution Linear-Gaussian [2]
Dphi deg = 240. r.m.s. Φ width [deg]
dEo = 0.014 r.m.s. ∆E half-width [GeV]
outfile = ’HESR1-e5-240-em-6-de-3.dis’ generated distribution file
/ namelist group end mark

NOTES: [1] Transverse options are ’G1’ (Gaussian), ’L’ (Linear), ’KV’ (Kapchinskij-Vladimirskij),
’WB’ (water bag). [2] Longitudinal distributions are: ’LG’ (Linear-Gaussian), ’PG’ (Parabolic-
Gaussian), ’GG’ (Gaussian-Gaussian)

16

15 Post Processors

A collection of post-processing routines are in the folder “utils” of the SIMBAD distribution. They
are mostly operating on the Phase Space output file. The operation of each PostProc is described
below; a description of their operation appears on the screen by simply invoking the routine.

First, let us recall that the Phase Space output consists of a file containing the macro number
and the six phase space coordinates of the macro. The file is arranged in sectors, on for each turn
dumped, separated by two blank lines. This arrangement permits to plot phase space diagrams
for each turn separately using the “i” (index) option of GNUPLOT. The “prune” capability of the
Phase Space Diagnostics module of SubSec. /refsubs:PSDiag allows to dump to the file only a subset
of the macros used in the simulation, in order to limit the size of the file itself.

15.1 ttunes

This C++ routine operates on the Phase Space output file. Its purpose is to calculate the betatron
and synchrotron tune from the eigenvalues of the One Turn Matrix (OTM) built from six turns of
each macroparticle [10]. The output of ttunes can be either a file containing the tunes for all turn is
dumped or a specific turn. Another alternative dump contains the OTM and the eigenvalues for a
specific particle.

To work correctly, one should calculate the tunes at a location in the machine where the β-Twiss
function for X and Y are as different as possible from each other. This will facilitate the attribution
of the eigenvalue to the appropriate coordinate.

Let us invoke the routine
> ttunes

usage:
ttunes −i <filename in > -x <betaX> -y <betaY> [-m <M-partno¿ -n <recno>] [-a <average num>]

The input, filename in should contain the phasespace output with data dumped each turn.
betaX should be the betaX value associated with the phasespace output
betaY should be the betaY value associated with the phasespace output
If the calculated matrix is desired M-partno is the particle number
for which the matrix calculated after the initial records are processed
and recno is the record number in which to print the matrix will be stored to file ”matrix.dat”.
The processing of the file will end at that point.
average num is the number of turns over which the tunes are averaged. This means that the tune output
will be average num turns per record.
average num must be an integer greater than 1
Data output, consisting of partno, tunex, tuney, tunez,alphaX, betaX, alphaY, betaY, alphaZ, betaZ (OTM),
is on stdout, while status output, which consists of record (turn) number and particle count,
is on stderr.

Example to write tunes (and macro number) for each macro and each turn to a file “tune.dat”. In
this example the values of the : β-functs at the chosen locasion were 69 [m] and 148 [m], respectively
ttunes -i PSDump.dat -x 69. -y 148. > tunes.dat

Example to write the OTM for macro no. 10, at turn 100, to a file“matrix-10.100.dat” (first
record has index 0)
ttunes -i PSDump.dat -x 69. -y 148. -m 10 -n 99 > matrix-10.100.dat

15.2 tunecontour

This C++ routine was designed to operate on output files created by the Tune Diagnostic module
of SubSec. 12.2. It creates GNUPLOT compatible file for 2D and 3D contours of betatron data in
the Qx − Qy plane.

17

Let us invoke the routine
> tunecontour

usage:
tunecontour -d <dimension> -i <filename in> -o <filename out>

contours may be plotted using gnuplot with the following commands:
set cntrparam levels auto <number>
set nosurface
set contour
set view 0,0
splot ’<filename out>’ w l

15.3 picktunes

This C++ routine was designed to operate on output files created by the Tune Diagnostic module
of SubSec. 12.2. It picks up the betatrn tune of specific particles

Let us invoke the routine
> picktune

usage:
picktunes -i <filename in> [-t <0,1>]

The input file should contain the tunes output.
Enter the particle numbers on std input.
The last entry should be the word ”end”
The output is printed on stdout
If -t has argument 0, the format of the input is assumed to be the ORBIT tunes output file.
If -t has argument 1, the format of the input is assumed to be the output from ttunes.
The default is 1.

15.4 pickparts

This C++ routine was designed to operate on output files created by the Phase Space Diagnostic
module of SubSec. 12.1. It picks up the phase space coordinates of specific particles for all turns
dumped.

Let us invoke the routine
> pickparts

usage:
pickparts -i <filename in> -o <filename out> [-ns]

the input file should contain the phasespace output
enter the particle numbers on std input
the last entry should be the word ”end”
the output file will contain the phasespace for those particles
-ns specifies that no spaces should be added between records

15.5 partsemit

This C++ routine was designed to operate on output files created by the Phase Space Diagnostic
module of SubSec. 12.1. It calculates the transverse emittance of the Herd for all turns dumped
with the formula

εx =
[

< x̂2 >< (p̂x
2 > − < x̂p̂x >2

]1/2

, x̂ = x− < x >, p̂x = px− < px >

Let us invoke the routine
> partsemit

18

usage:
partsemit -a <alpha> -b <beta> -e <emmit> -l <lowerbnd> -u <upperbnd> -i <file in>

each particle is tested against the c-s invariant < —lowerbnd—([upperbnd—)*emmit
the input file should be a PhaseSpace diagnostic file
the output will be printed to stdout
that are within the emittance range specified

15.6 longemit

This C++ routine was designed to operate on output files created by the Phase Space Diagnostic
module of SubSec. 12.1. It calculates the longitudinal emittance of the Herd

Let us invoke the routine
> longemit

usage:
longemit -i <filename in> -s <E> [-r <record]>] [-e <E0>]

the input file should contain the phasespace output
<E> is the energy of the synchronous particle (GeV)
<record]> denotes the record number in the phasespace output
<record]y> should index starting from 0
<E0> is the rest energy of the particle (GeV), default is proton

15.7 extractrec

This C++ routine was designed to operate on output files created by the Phase Space Diagnostic
module of SubSec. 12.1. It selects a single record (turn) from the file

Let us invoke the routine
> extractrec

usage:
extractrec -i <filename in> [-r <record]>]

the input file should contain the phasespace output
<record]> denotes the record number in the phasespace output
<record]> should index starting from 0
default value is 0

15.8 binphsp

This C++ routine was designed to operate on output files created by the Phase Space Diagnostic
module of SubSec. 12.1. It bins and creates 3D histograms of the phase space

Let us invoke the routine
> binphsp

usage:
binphsp −x < xdim > −y < ydim > [−xparm < 1 − 6 >][−yparm < 1 − 6 >]
[−xmax < xmax >][−xmin < xmin >][−ymax < ymax >][−ymin < ymin >]
[−t < type >][−z < plotZero >] − i < inputfile >

binphsp bins phasespace parameters yparm vs xparm using a grid
(xmax-xmin) * (ymax-ymin) in size with xdim * ydim grid points
the input file should be the PhaseSpace output file
the type may be specified as 0 or 1 where 0=2D and 1=3D
plotZero may take values of 0 or 1 where 0=no and 1=yes
plotZero should be set to 1 if contour lines are desired
this will result in greater output volume

19

References

[1] R.W.Hockney and J.W.Eastwood: Computer Simulation Using Particles. Adam Hilger,
IOP Publishing, New York, 1988.

[2] J.D.Galambos, J.A.Holmes, D.K.Olsen A.Luccio and J.Beebe-Wang: Orbit User’s

Manual Vers. 1.10. Technical Report SNS/ORNL/AP 011, Rev.1, 1999.

[3] T.Williams, C.Kelley: Gnuplot Release 4-0-2. Technical Report UTC,
http://www.gnuplot.info, April 12, 2004.

[4] H.Grote and F.Ch.Iselin: The MAD program, Vers.8.19. Technical Report CERN/SL/90-
13, Geneva, Switzerland, 1996.

[5] F.W. Jones, G.H. Mackenzie and H. Schönauer: Accsim - A Program to Simulate the

Accumulation of Intense Proton Beams. Particle Accelerators, 31:199, 1990.

[6] F.Ch.Iselin: The MAD Program. Version 8.13. Physical Methods Manual. Technical Report
CERN/SL/92-?? (AP), European Organization for Nuclear Research, Geneva, CH, 1994.

[7] J.A.MacLachlan: ESME: Longitudinal Phase Space Particle Tracking-Program Documenta-

tion. Technical Report Fermilab, TM-1274, 5/84, 1984.

[8] J.A.MacLachlan: Longitudinal Phase Space Tracking With Space Charge and Wall Coupling

Impedance. Technical Report Fermilab, FN-446, February 1987.

[9] G.Franchetti: Method for generating a generic matched distribution in N dimensions. Tech-
nical Report GSI Report, unpublished, March 14 2003.

[10] A.U.Luccio and N.L.D’Imperio: Eigenvalues of the One-turn Matrix. Technical Report
C-AD/AP/126, Brookhaven National Laboratory. Upton, NY, December 2003.

20

